The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is
$81$
${1 \over {81}}$
$20$
$0.05$
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is
If ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ then the number of values of $x$ which are integral multiples of ${\pi \over 4},$ is
If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to
${\log _4}18$ is