If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then

  • A

    The maximum value of $x$ is $1/\sqrt {10} $

  • B

    $x$ lies between $1/100$ and $1/\sqrt {10} $

  • C

    The minimum value of $x$ is $1/100$

  • D

    All of These

Similar Questions

If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is

If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval

Let $a, b, x$ be positive real numbers with $a \neq 1$, $x \neq 1$, ab $\neq 1$. Suppose $\log _{ a } b =10$, and $\frac{\log _{ a } x \log _{ x }\left(\frac{ b }{ a }\right)}{\log _{ x } b \log _{ ab } x }=\frac{ p }{ q }$, where $p$ and $q$ are positive integers which are coprime. Then $p+q$ is

  • [KVPY 2021]

If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to

If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to