For $y = {\log _a}x$ to be defined $'a'$ must be

  • [IIT 1990]
  • A

    Any positive real number

  • B

    Any number

  • C

    $ \ge e$

  • D

    Any positive real number $ \ne 1$

Similar Questions

$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in

Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is

Which is the correct order for a given number $\alpha $in increasing order

If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$