The value of ${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}}$ is equal to
$49$
$625$
$216$
$890$
Which is the correct order for a given number $\alpha $in increasing order
The product of all positive real values of $x$ satisfying the equation $x^{\left(16\left(\log _5 x\right)^3-68 \log _5 x\right)}=5^{-16}$is. . . . .
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to