Which is the correct order for a given number $\alpha $in increasing order
${\log _2}\alpha ,\,{\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _{10}}\alpha $
${\log _{10}}\alpha ,\,{\log _3}\alpha ,{\log _e}\alpha ,{\log _2}\alpha $
${\log _{10}}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _3}\alpha $
${\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _{10}}\alpha $
If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is
The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to
Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$ Then, the possible value(s) of $\frac{x}{y}$
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval