Which is the correct order for a given number $\alpha $in increasing order
${\log _2}\alpha ,\,{\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _{10}}\alpha $
${\log _{10}}\alpha ,\,{\log _3}\alpha ,{\log _e}\alpha ,{\log _2}\alpha $
${\log _{10}}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _3}\alpha $
${\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _{10}}\alpha $
Let $a, b, x$ be positive real numbers with $a \neq 1$, $x \neq 1$, ab $\neq 1$. Suppose $\log _{ a } b =10$, and $\frac{\log _{ a } x \log _{ x }\left(\frac{ b }{ a }\right)}{\log _{ x } b \log _{ ab } x }=\frac{ p }{ q }$, where $p$ and $q$ are positive integers which are coprime. Then $p+q$ is
If $x, y, z \in R^+$ are such that $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ and ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ then ${\log _x}z$ is equal to
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in
The number of solution of ${\log _2}(x + 5) = 6 - x$ is
${\log _4}18$ is