Which is the correct order for a given number $\alpha $in increasing order

  • A

    ${\log _2}\alpha ,\,{\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _{10}}\alpha $

  • B

    ${\log _{10}}\alpha ,\,{\log _3}\alpha ,{\log _e}\alpha ,{\log _2}\alpha $

  • C

    ${\log _{10}}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _3}\alpha $

  • D

    ${\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _{10}}\alpha $

Similar Questions

The value of ${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}}$ is equal to

Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is

  • [KVPY 2009]

If $a = {\log _{24}}12,\,b = {\log _{36}}24$ and $c = {\log _{48}}36,$ then $1+abc$ is equal to

Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is

The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$