If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is
$0$
$1$
$2$
$3$
If ${\log _{12}}27 = a,$ then ${\log _6}16 = $
The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is
If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is
If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to