The value of $\sqrt {(\log _{0.5}^24)} $ is
$-2$
$\sqrt {( - 4)} $
$2$
None of these
If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then
For $y = {\log _a}x$ to be defined $'a'$ must be
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is