If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then
$x > y$
$x < y$
$x = y$
None of these
The value of $\left(\left(\log _2 9\right)^2\right)^{\frac{1}{\log _2\left(\log _2 9\right)}} \times(\sqrt{7})^{\frac{1}{\log _4 7}}$ is. . . . . . .
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in
Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is
For $y = {\log _a}x$ to be defined $'a'$ must be
If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is