The value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ is equal to
$-4$
$2$
$-2$
$4$
If $x, y, z \in R^+$ are such that $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ and ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ then ${\log _x}z$ is equal to
Let $\left(x_0, y_0\right)$ be the solution of the following equations $(2 x)^{\ln 2} =(3 y)^{\ln 3}$ $3^{\ln x} =2^{\ln y}$ . Then $x_0$ is
If ${\log _{10}}x = y,$ then ${\log _{1000}}{x^2} $ is equal to
If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is