If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to
$2\,(1 + 2m)$
${{1 + 2m} \over 2}$
${2 \over {1 + 2m}}$
$1 + m$
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is
If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
$\sum\limits_{r = 1}^{89} {{{\log }_3}(\tan \,\,{r^o})} = $
Let $a, b, x$ be positive real numbers with $a \neq 1$, $x \neq 1$, ab $\neq 1$. Suppose $\log _{ a } b =10$, and $\frac{\log _{ a } x \log _{ x }\left(\frac{ b }{ a }\right)}{\log _{ x } b \log _{ ab } x }=\frac{ p }{ q }$, where $p$ and $q$ are positive integers which are coprime. Then $p+q$ is