If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to

  • A

    $2\,(1 + 2m)$

  • B

    ${{1 + 2m} \over 2}$

  • C

    ${2 \over {1 + 2m}}$

  • D

    $1 + m$

Similar Questions

$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $

The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is

  • [KVPY 2017]

The number of solution $(s)$ of the equation $log_7(2^x -1) + log_7(2^x -7) = 1$, is -

Let $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum \limits_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2-b+c$ is equal to $................$.

  • [JEE MAIN 2023]

If ${\log _{10}}x = y,$ then ${\log _{1000}}{x^2} $ is equal to