If ${\log _{10}}x = y,$ then ${\log _{1000}}{x^2} $ is equal to
${y^2}$
$2y$
${{3y} \over 2}$
${{2y} \over 3}$
$\sum\limits_{r = 1}^{89} {{{\log }_3}(\tan \,\,{r^o})} = $
If ${\log _{10}}3 = 0.477$, the number of digits in ${3^{40}}$ is
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to
Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is
Which is the correct order for a given number $\alpha $in increasing order