$(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \text { to } \infty\right)}$ का मान ............. है ।
$-4$
$2$
$-2$
$4$
यदि $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ हो, तब $A $ का मान होगा
निम्नलिखित युगपत $(simultaneous)$ समीकरण $\log _{1 / 3}(x+y)+\log _3(x-y)=2$
$2^{y^2}=512^{x+1}$ के हल युगमों $(solution\,pairs)$ $(x, y)$ की संख्या होगी
यदि $\frac{1}{2} \le {\log _{0.1}}x \le 2$हो तब .......
असमिका ${\log _{0.2}}\frac{{x + 2}}{x} \le 1$ के लिए $x $ के वास्तविक मानों का समुच्चय है
यदि $1$ से भिन्न तीन विभिन्न धनात्मक संख्यायें $a, b, c $ इस प्रकार हो कि $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$$ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ तब $abc =$