The sum of coefficients in the expansion of ${(1 + x + {x^2})^n}$ is
$2$
${3^n}$
${4^n}$
${2^n}$
The value of $\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ is equal to :
If $n$ is an integer greater than $1$, then $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $
The value of $\left( \begin{array}{l}30\\0\end{array} \right)\,\left( \begin{array}{l}30\\10\end{array} \right) - \left( \begin{array}{l}30\\1\end{array} \right)\,\left( \begin{array}{l}30\\11\end{array} \right)$ + $\left( \begin{array}{l}30\\2\end{array} \right)\,\left( \begin{array}{l}30\\12\end{array} \right) + ....... + \left( \begin{array}{l}30\\20\end{array} \right)\,\left( \begin{array}{l}30\\30\end{array} \right)$
Sum of odd terms is $A$ and sum of even terms is $B$ in the expansion ${(x + a)^n},$ then
The number $111......1 $ ( $ 91$ times) is