दो वृत्त ${x^2} + {y^2} - 2x + 6y + 6 = 0$ तथा ${x^2} + {y^2} - 5x + 6y + 15 = 0$ परस्पर स्पर्श करते हैं। इनकी उभयनिष्ठ स्पर्श रेखा का समीकरण है

  • A

    $x = 3$

  • B

    $y = 6$

  • C

    $7x - 12y - 21 = 0$

  • D

    $7x + 12y + 21 = 0$

Similar Questions

एक वृत्त $S$ बिन्दु $(0,1)$ से गुजरता है तथा वृत्तों $(x-1)^2+y^2=16$ एवं $x^2+y^2=1$ के लम्बकोणीय (orthogonal) है, तब

$(A)$ $S$ की त्रिज्या (radius) $8$ है

$(B)$ $S$ की त्रिज्या $7$ है

$(C)$ $S$ का केन्द्र $(-7,1)$ है

$(D)$ $S$ का केन्द्र $(-8,1)$ है

  • [IIT 2014]

वत्त, $x ^{2}+ y ^{2}-2 x -6 y +6=0$ का कोई एक व्यास, किसी और वत्त ' $C$ ' की एक जीवा है। यदि वत्त ' $C$ ' का केन्द्र $(2,1)$ है, तो इस की त्रिज्या बराबर है

  • [JEE MAIN 2021]

उस वृत्त का समीकरण जिसका केन्द्र $x + 2y - 3 = 0$ पर है एवं जो वृत्तों ${x^2} + {y^2} - 2x - 4y + 1 = 0$ व ${x^2} + {y^2} - 4x - 2y + 4 = 0$ के प्रतिच्छेद बिन्दुओं से होकर जाता है, है

$k$ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + kx + 4y + 2 = 0$ व $2({x^2} + {y^2}) - 4x - 3y + k = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है

यदि परवलय $y^{2}=4 x$ की नाभिलम्ब जीवा, दो वृत्तों, $C_{1}$ तथा $C _{2}$ की उभयनिष्ठ जीवा है, जबकि वृत्तों में से प्रत्येक का अर्धव्यास $2 \sqrt{5}$ है, तो वृत्तों $C _{1}$ एवं $C _{2}$ के केन्द्र बिन्दुओं के बीच की दूरी है 

  • [JEE MAIN 2020]