एक वृत्त $S$ बिन्दु $(0,1)$ से गुजरता है तथा वृत्तों $(x-1)^2+y^2=16$ एवं $x^2+y^2=1$ के लम्बकोणीय (orthogonal) है, तब
$(A)$ $S$ की त्रिज्या (radius) $8$ है
$(B)$ $S$ की त्रिज्या $7$ है
$(C)$ $S$ का केन्द्र $(-7,1)$ है
$(D)$ $S$ का केन्द्र $(-8,1)$ है
$(B,D)$
$(B,C)$
$(A,C)$
$(A,D)$
वृत्तों ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0$ तथा ${x^2} + {y^2} - 12y + 8 = 0$ का मूलाक्ष केन्द्र हैं
वृत्तों $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ तथा ${x^2} + {y^2} - 3x - 4y + 5 = 0$ का मूलाक्ष है
यदि तीन समाक्ष वृत्तों के केन्द्र $P, Q, R$ एवं त्रिज्यायें क्रमश: ${r_1},\,\,{r_2},\,\,{r_3}$ हों, तो $QRr_1^2 + RP\,r_2^2 + PQr_3^2 = $
माना सबसे बड़े तथा सबसे छोटे वत्तों, जो बिन्दु $(-4,1)$ से होकर जाते हैं तथा जिनके केन्द्र, वत्त $x^{2}+y^{2}+2 x+4 y-4=0$ की परिधि पर स्थित हैं, की त्रिज्याएँ क्रमशः $I _{1}$ तथा $I _{2}$ हैं। यदि $\frac{I_{1}}{I_{2}}=a+b \sqrt{2}$ है, तो $a+b$ बराबर है
यदि वृत्त ${x^2} + {y^2} - 9 = 0$ और ${x^2} + {y^2} + 2ax + 2y + 1 = 0$ एक दूसरे को स्पर्श करें तो $a$ का मान होगा