સાદા લોલકનો આવર્તકાળ $T =2 \pi \sqrt{\frac{\ell}{ g }}$ છે. $1\, mm$ ચોકસાઇથી લોલકની લંબાઈ માપતા $10\, cm$ મળે છે. $1\,s$ ની લઘુતમ માપશક્તિ વાળી ઘડિયાળથી માપતા $200$ દોલનનો સમય $100$ સેકન્ડ મળે છે. આ સાદા લોલક દ્વારા $g$ ના મૂલ્યને ચોકસાઈ સાથે માપતા પ્રતિશત ત્રુટી $x$ મળે છે.$x$ નું મૂલ્ય નજીકના પૂર્ણાંકમાં કેટલું ($\%$ માં) હશે?
$2$
$3$
$5$
$4$
એક ભૌતિક રાશિ $x$ નું પારિમાણિક સૂત્ર $M^{-1}L^{3}T^{-2}$ છે. $L, M$ અને $T$ ના માપનમાં અનુક્રમે ત્રુટિઓ $3\%, 2\%$ અને $4\%$ છે. તો $x$ ના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ ........ $\%$
અવલોકનકાર દ્વારા નોંધવામાં આવતું પાણીનું પ્રારંભિક તાપમાન અને અંતિમ તાપમાન અનુક્રમે $ (40.6 \pm 0.2)^{\circ} C$ અને $(78.3 \pm 0.3) ^{\circ} C$ છે. યોગ્ય ત્રુટિ મર્યાદામાં તાપમાનનો વધારો ...મળે.
રાષ્ટ્રીય પ્રયોગશાળામાં આવેલી પ્રમાણભૂત ઘડિયાળ સાથે બે ઘડિયાળોનું પરીક્ષણ કરવામાં આવે છે. પ્રમાણભૂત ઘડિયાળ જ્યારે બપોરના $12:00$ નો સમય દર્શાવે છે ત્યારે આ બે ઘડિયાળના સમય નીચે મુજબ મળે છે :
ઘડિયાળ $1$ | ઘડિયાળ $2$ | |
સોમવાર | $12:00:05$ | $10:15:06$ |
મંગળવાર | $12:01:15$ | $10:14:59$ |
બુધવાર | $11:59:08$ | $10:15:18$ |
ગુરુવાર | $12:01:50$ | $10:15:07$ |
શુક્રવાર | $11:59:15$ | $10:14:53$ |
શનિવાર | $12:01:30$ | $10:15:24$ |
રવિવાર | $12:01:19$ | $10:15:11$ |
જો તમે કોઈ પ્રયોગ કરી રહ્યાં હોય જેના માટે તમને ચોકસાઈ સાથે સમય અંતરાલ દર્શાવતી ઘડિયાળની આવશ્યકતા છે, તો આ બે પૈકી કઈ ઘડિયાળ લેવાનું મુનાસિબ માનશો ? શા માટે ?
ગોળાના પૃષ્ઠના ક્ષેત્રફળના માપનમાં મળેલી સાપેક્ષ ત્રુટિ $\alpha $ છે. તો તેના કદના માપનમાં મળતી સાપેક્ષ ત્રુટિ કેટલી હશે?
બે અવરોધના મૂલ્યો $R_1 = 3 \Omega \pm 1\%$ અને $R_2 = 6 \Omega \pm 2\%$ છે જ્યારે તેમને સમાંતરમાં જોડવામાં આવે ત્યારે તેમના સમતુલ્ય અવરોધમાં ત્રુટિ ......... $\%$ થાય.