The time period of a simple pendulum is given by $T =2 \pi \sqrt{\frac{\ell}{ g }}$. The measured value of the length of pendulum is $10\, cm$ known to a $1\, mm$ accuracy. The time for $200$ oscillations of the pendulum is found to be $100$ second using a clock of $1s$ resolution. The percentage accuracy in the determination of $'g'$ using this pendulum is $'x'$. The value of $'x'$ to the nearest integer is ...........$\%$

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $3$

  • C

    $5$

  • D

    $4$

Similar Questions

If the error in the measurement of radius of a sphere is $2\%$ then the error in the determination of volume of the sphere will be ........ $\%$

  • [AIPMT 2008]

In the expression for time period $T$ of simple pendulum $T=2 \pi \sqrt{\frac{l}{g}}$, if the percentage error in time period $T$ and length $l$ are $2 \%$ and $2 \%$ respectively then percentage error in acceleration due to gravity $g$ is equal to ......... $\%$

A physical quantity $A$ is related to four observable $a,b,c$ and $d$ as follows, $A = \frac{{{a^2}{b^3}}}{{c\sqrt d }}$, the percentage errors of measurement in $a,b,c$ and $d$ are $1\%,3\%,2\% $ and $2\% $ respectively. What is the percentage error in the quantity $A$ ......... $\%$

The relative error in the determination of the surface area of a sphere is $\alpha $. Then the relative error in the determination of its volume is

  • [JEE MAIN 2018]

The values of a number of quantities are used in a mathematical formula. The quantity that should be most precise and accurate in measurement is the one