A physical quantity $A$ is related to four observable $a,b,c$ and $d$ as follows, $A = \frac{{{a^2}{b^3}}}{{c\sqrt d }}$, the percentage errors of measurement in $a,b,c$ and $d$ are $1\%,3\%,2\% $ and $2\% $ respectively. What is the percentage error in the quantity $A$ ......... $\%$

  • A

    $12$

  • B

    $7$

  • C

    $5$

  • D

    $14$

Similar Questions

A physical quantity $y$ is represented by the formula $y=m^{2}\, r^{-4}\, g^{x}\,l^{-\frac{3}{2}}$. If the percentage error found in $y, m, r, l$ and $g$ are $18,1,0.5,4$ and $p$ respectively, then find the value of $x$ and $p$.

  • [JEE MAIN 2021]

A physical parameter a can be determined by measuring the parameters $b, c, d $ and $e $ using the relation $a =$ ${b^\alpha }{c^\beta }/{d^\gamma }{e^\delta }$. If the maximum errors in the measurement of $b, c, d$ and e are ${b_1}\%$, ${c_1}\%$, ${d_1}\%$ and ${e_1}\%$, then the maximum error in the value of a determined by the experiment is

Two clocks are being tested against a standard clock located in a national laboratory. At $12: 00: 00$ noon by the standard clock, the readings of the two clocks are 

$\begin{array}{ccc} & \text {Clock} 1 & \text {Clock} 2 \\ \text { Monday } & 12: 00: 05 & 10: 15: 06 \\ \text { Tuesday } & 12: 01: 15 & 10: 14: 59 \\ \text { Wednesday } & 11: 59: 08 & 10: 15: 18 \\ \text { Thursday } & 12: 01: 50 & 10: 15: 07 \\ \text { Friday } & 11: 59: 15 & 10: 14: 53 \\ \text { Saturday } & 12: 01: 30 & 10: 15: 24 \\ \text { Sunday } & 12: 01: 19 & 10: 15: 11\end{array}$

If you are doing an experiment that requires precision time interval measurements, which of the two clocks will you prefer?

In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is $10 \pm 0.1 \mathrm{~cm}$ and the distance of its real image from the lens is $20 \pm 0.2 \mathrm{~cm}$. The error in the determination of focal length of the lens is $n \%$. The value of $n$ is. . . . . . .

  • [IIT 2023]

If the length of rod $A$ is $3.25 \pm 0.01 \,cm$ and that of $B$ is $4.19 \pm 0.01\, cm $ then the rod $B$ is longer than rod $A$ by