થરમૉમિટર વડે બે પદાર્થોનાં માપવામાં આવેલા તાપમાનો અનુક્રમે : $t_{1}=20^{\circ} C \pm 0.5^{\circ} C$ અને $t_{2}=50^{\circ} C \pm 0.5^{\circ} C$ છે. બંને પદાર્થોનાં તાપમાનનો તફાવત અને તેમાં ઉદ્ભવેલ ત્રુટિની ગણતરી કરો.
$70^{\circ} C \pm 1^{\circ} C$
$30^{\circ} C \pm 0^{\circ} C$
$30^{\circ} C \pm 0.5^{\circ} C$
$30^{\circ} C \pm 1^{\circ} C$
પતરા પર લાગતા બળ અને તેની બાજુઓની લંબાઈની મદદથી ચોરસ પતરા પરનું દબાણ માપેવામાં આવે છે, જો બળ અને લંબાઈના માપનમાં મહત્તમ ત્રુટિ અનુક્રમે $4\%$ અને $2\%$ હોય તો દબાણના માપનમાં મહત્તમ ત્રુટિ ........ $\%$ હશે .
સાદા લોલકનો આવર્તકાળ $T =2 \pi \sqrt{\frac{\ell}{ g }}$ છે. $1\, mm$ ચોકસાઇથી લોલકની લંબાઈ માપતા $10\, cm$ મળે છે. $1\,s$ ની લઘુતમ માપશક્તિ વાળી ઘડિયાળથી માપતા $200$ દોલનનો સમય $100$ સેકન્ડ મળે છે. આ સાદા લોલક દ્વારા $g$ ના મૂલ્યને ચોકસાઈ સાથે માપતા પ્રતિશત ત્રુટી $x$ મળે છે.$x$ નું મૂલ્ય નજીકના પૂર્ણાંકમાં કેટલું ($\%$ માં) હશે?
બે રાશિના મૂલ્યો સાધનથી ચોકચાઈ પૂર્વક માપતા $A = 2.5\,m{s^{ - 1}} \pm 0.5\,m{s^{ - 1}}$, $B = 0.10\,s \pm 0.01\,s$ મળે છે. તો $AB$ નું માપન કેટલું થાય?
આપેલ રાશિની ગાણિતિક ગણતરીમાં અનિશ્ચિતતા અથવા ત્રુટિ નક્કી કરવાના નિયમો ઉદાહરણ દ્વારા સમજાવો.
સેકન્ડના લોલકના દોલનોનો સરેરાશ આવર્તકાળ $2.00$ સેકન્ડ છે અને આવર્તકાળની સરેરાશ ત્રુટિ $0.05$ સેકન્ડ છે. મહત્તમ ત્રુટિનું અંદાજિત મૂલ્ય મેળવવા માટે આવર્તકાળ કેટલો હોવો જોઇએ ?