वृत्त ${x^2} + {y^2} = 4$ के किसी बिन्दु $P$ पर स्पर्श रेखा अक्षों को $A$ व $B$ पर मिलती है, तो
$AB$ की लम्बाई नियत है
$PA$ व $PB$ हमेशा बराबर होते हैं
$AB$ के मध्य बिन्दु का बिन्दुपथ ${x^2} + {y^2} = {x^2}{y^2}$ है
इनमें से कोई नहीं
मूल बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची गयी दो स्पर्श रेखाएँ परस्पर लम्बवत् होंगी, यदि
वृत्त के बिन्दु $(3, 4)$ पर अभिलम्ब, वृत्त को $(-1, -2)$ पर काटता है तब वृत्त का समीकरण है
यदि रेखा $x = k$ वृत्त ${x^2} + {y^2} = 9$ का स्पर्श करती हो, तो $k$ का मान है
यदि $OA$ तथा $OB$ मूल बिन्दु $O$ से वृत्त ${x^2} + {y^2} - 6x - 8y + 21 = 0$ पर खींची गयी रेखाएँ हों तो $AB =$
वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण जो कि सरल रेखा $y = mx + c$ के लम्बवत् है, होगा