मूल बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची गयी दो स्पर्श रेखाएँ परस्पर लम्बवत् होंगी, यदि
${g^2} + {f^2} = 2c$
$g = f = {c^2}$
$g + f = c$
इनमें से कोई नहीं
वृत्त ${x^2} + {y^2} - 2x + 4y + 1 = 0$ पर बिन्दु $A(0,\,1)$ से खींची गयीं स्पर्शियाँ $AB$ व $AC$ हैं, तो बिन्दुओं $A, B$ व $C$ से जाने वाले वृत्त का समीकरण है
माना $\mathrm{O}$ मूलबिन्दु है तथा $\mathrm{OP}$ और $\mathrm{OQ}$ वृत्त $x^2+y^2-6 x+4 y+8=0$ के बिन्दुओं $P$ तथा $Q$ पर स्पर्श रेखाएं हैं। यदि त्रिभुज $\mathrm{OPQ}$ का परिवृत्त, बिन्दु $\left(\alpha, \frac{1}{2}\right)$ से होकर जाती है, तो $\alpha$ का एक मान है
वृत्त $(\mathrm{x}-\alpha)^2+(\mathrm{y}-\beta)^2=50$, जहाँ $\alpha, \beta>0$ है, का विचार कीजिए। यदि यह वृत्त रेखा $\mathrm{y}+\mathrm{x}=0$ की बिंदु $P$ की मूल बिंदु से दूरी $4 \sqrt{2}$ है, तो $(\alpha+\beta)^2$ बराबर है................।
यदि रेखा $4x + 3y + \lambda = 0$ वृत्त $2({x^2} + {y^2}) = 5$ को स्पर्श करे तो $\lambda $ का मान होगा
बिन्दु $(0, 0)$ से वृत्त ${x^2} + {y^2} + 2x + 6y - 15 = 0$ पर खींची जा सकने वाली स्पर्श रेखाओं की संख्या है