सारणिक $\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|$ का मान शून्य होगा यदि $a,b,c$ होंगे
गुणोत्तर श्रेणी में
समान्तर श्रेणी में
हरात्मक श्रेणी में
इनमें से कोई नहीं
माना $[\lambda]$ महत्तम पूर्णांक $\leq \lambda$ हैं। $\lambda$ के सभी मानों, जिनके लिए रैखिक समीकरण निकाय $x + y + z =4$, $3 x +2 y +5 z =3,9 x +4 y +(28+[\lambda]) z =[\lambda]$ का हल है, का समुच्चय है
यदि $p + q + r = 0 = a + b + c$, तो सारणिक $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$ का मान है
समीकरण $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ के मूल हैं
समीकरणों के निकाय $2x + y - z = 7,\,$ $x - 3y + 2z = 1$ तथा $x + 4y - 3z = 5$ के हलों की संख्या होगी
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$