The sum to $(n + 1)$ terms of the following series $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + $..... is

  • A

    $\frac{1}{{n + 1}}$

  • B

    $\frac{1}{{n + 2}}$

  • C

    $\frac{1}{{n(n + 1)}}$

  • D

    None of these

Similar Questions

The sum of the last eight coefficients in the expansion of ${(1 + x)^{15}}$ is

In the expansion of ${(1 + x)^{50}},$ the sum of the coefficient of odd powers of $x$ is

Let $\left(2 x ^{2}+3 x +4\right)^{10}=\sum \limits_{ r =0}^{20} a _{ r } x ^{ r } \cdot$ Then $\frac{ a _{7}}{ a _{13}}$ is equal to

  • [JEE MAIN 2020]

$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $

If ${a_k} = \frac{1}{{k(k + 1)}},$ for $k = 1,\,2,\,3,\,4,.....,\,n$, then ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $