Let $\left(2 x ^{2}+3 x +4\right)^{10}=\sum \limits_{ r =0}^{20} a _{ r } x ^{ r } \cdot$ Then $\frac{ a _{7}}{ a _{13}}$ is equal to

  • [JEE MAIN 2020]
  • A

    $4$

  • B

    $32$

  • C

    $16$

  • D

    $8$

Similar Questions

If ${a_r}$ is the coefficient of ${x^r}$, in the expansion of ${(1 + x + {x^2})^n}$, then ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $

The sum of coefficients in the expansion of ${(x + 2y + 3z)^8}$ is

Let $(1 + x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + . . . . . +C_mx^m$,  where $C_r ={}^m{C_r}$ and $A = C_1C_3 + C_2C_4+ C_3C_5 + C_4C_6 + . . . . . .. + C_{m-2}C_m$,  then which is false

If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, then the value of ${C_0} + {C_2} + {C_4} + {C_6} + .....$ is

The number of terms in the expansion of $(1 +x)^{101}  (1 +x^2 - x)^{100}$ in powers of $x$ is

  • [JEE MAIN 2014]