The sum of the last eight coefficients in the expansion of ${(1 + x)^{15}}$ is

  • A

    ${2^{16}}$

  • B

    ${2^{15}}$

  • C

    ${2^{14}}$

  • D

    None of these

Similar Questions

$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $

If $S_n =$$\sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and $T_n =$$\sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $ then $\frac{{{T_n}}}{{{S_n}}}$ is equal to

If ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , then the value of ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ is

The value of ${\sum\limits_{r = 1}^{19} {\frac{{{}^{20}{C_{r + 1}}\left( { - 1} \right)}}{{{2^{2r + 1}}}}} ^r}$ is

The sum of the coefficients in the expansion of ${(x + y)^n}$ is $4096$. The greatest coefficient in the expansion is

  • [AIEEE 2002]