$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $

  • A

    ${2^{19}} + \frac{1}{2}{\,^{20}}{C_{10}}$

  • B

    ${2^{19}}$

  • C

    $^{20}{C_{10}}$

  • D

    None of these

Similar Questions

Let ${ }^{n} C_{r}$ denote the binomial coefficient of $x^{r}$ in the expansion of $(1+ x )^{ n }.$

If $\sum_{ k =0}^{10}\left(2^{2}+3 k \right){ }^{ n } C _{ k }=\alpha .3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in R$ then $\alpha+\beta$ is equal to ....... .

  • [JEE MAIN 2021]

If n is a positive integer and ${C_k} = {\,^n}{C_k}$, then the value of ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =

If  the number of terms in the expansion  of ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ is $28$ then the sum of the coefficients of all the terms in this expansion, is :

  • [JEE MAIN 2016]

The value of $\left( \begin{array}{l}30\\0\end{array} \right)\,\left( \begin{array}{l}30\\10\end{array} \right) - \left( \begin{array}{l}30\\1\end{array} \right)\,\left( \begin{array}{l}30\\11\end{array} \right)$ + $\left( \begin{array}{l}30\\2\end{array} \right)\,\left( \begin{array}{l}30\\12\end{array} \right) + ....... + \left( \begin{array}{l}30\\20\end{array} \right)\,\left( \begin{array}{l}30\\30\end{array} \right)$

  • [IIT 2005]

The sum of the coefficients in the expansion of ${(1 + x - 3{x^2})^{3148}}$ is