$(1+ x )^{ n +2}$ ના દ્રીપદી વિસ્તરણમાં $1:3:5$ ગુણોત્તરમાં હોય તેવા ત્રણ ક્રમિક પદોના સહગુણકોનો સરવાળો $........$ થાય.
$25$
$63$
$41$
$92$
${\left( {1 - 2\sqrt x } \right)^{50}}$ના દ્ઘિપદી વિસ્તરણમાં $x $ ની પૂર્ણાક ઘાતાંકના સહગુણકોનો સરવાળો . . . . . . . . . . થાય.
$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ ની કિમંત મેળવો.
વિધાન $1$: $\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) = \left( {n + 2} \right){2^{n - 1}}$
વિધાન $2$:$\;\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right){x^r}\; = {\left( {1 + x} \right)^n} + nx{\left( {1 + x} \right)^{n - 1}}$
${(x + 2y + 3z)^8}$ ના સહગુણકોનો સરવાળો.
જો $^{20}{C_1} + \left( {{2^2}} \right){\,^{20}}{C_3} + \left( {{3^2}} \right){\,^{20}}{C_3} + \left( {{2^2}} \right) + ..... + \left( {{{20}^2}} \right){\,^{20}}{C_{20}} = A\left( {{2^\beta }} \right)$ થાય તો $(A, \beta )$ ની કિમત મેળવો.