दीर्घवृत्त के किसी बिन्दु पर नाभीय दूरियों का योग क्या होगा, जबकि दीर्घवृत्त के दीर्घाक्ष व लघुअक्ष की लम्बाईयाँ क्रमश: $2a$ व $2b$ हैं
$2a$
$\frac{{2a}}{b}$
$\frac{{2b}}{a}$
$\frac{{{b^2}}}{a}$
माना रेखा $5 x+7 y=50$ पर बिंदु $A(\alpha, 0)$ तथा $\mathrm{B}(0, \beta)$ हैं। माना बिंदु $\mathrm{P}$, रेखा खण्ड $\mathrm{AB}$ को अंतः $7: 3$ के अनुपात में बांटता है। माना दीर्घवृत्त $\mathrm{E}: \frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की एक नियता $3 \mathrm{x}-25=0$ है तथा संगम नाभि $S$ है। यदि बिंदु $S$ से $\mathrm{x}$-अक्ष पर लंब, बिंदु $\mathrm{P}$ से होकर जाता है, तो $\mathrm{E}$ के नाभिलंब की लम्बाई है
माना दीर्घवत्त $\frac{ x ^{2}}{9}+\frac{ y ^{2}}{1}=1$ तथा वत्त $x ^{2}+ y ^{2}=3$ के प्रथम चतुर्थाश में प्रतिच्छेदन बिन्दु पर स्पर्श रेखाओं के बीच न्यून कोण $\theta$ है। तब $\tan \theta$ बराबर है
यदि दीर्घवृत्त के बिन्दु $P$ पर खींचा गया अभिलम्ब दीर्घअक्ष और लुघअक्ष को क्रमश: $G$ तथा $g$ पर काटे तथा $C$ यदि उस दीर्घवृत्त का केन्द्र हो, तो
दीर्घवृत्त ${x^2} + 3{y^2} = 6$ के केन्द्र से $2$ इकाई दूरी पर दीर्घवृत्त पर स्थित किसी बिन्दु का उत्केन्द्र कोण है
यदि $E$ दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ है तथा $C$ वृत्त ${x^2} + {y^2} = 9$है। $P$ व $Q$ दो बिन्दु क्रमश: $(1, 2)$ एवं $(2, 1)$ हों तो