$a$ व $b$ के बीच में $n$ समान्तर माध्यों का योग है
$\frac{{n(a + b)}}{2}$
$n(a + b)$
$\frac{{(n + 1)(a + b)}}{2}$
$(n + 1)(a + b)$
धनपूर्णांक के $5-$ टुपल्स $(tuples)$ $(a, b, c, d, e)$, इस प्रकार हैं कि
$I$. $a, b, c, d, e$ उत्तल पंचकोण $(Convex\,pentagon)$ के डिग्री में कोणों के माप हैं ।
$II$. $a \leq b \leq c \leq d \leq e$
$III$. $a, b, c, d, e$ अंकगणितीय श्रेढ़ी मे हैं ।
ऐसे कितने $5-$ टुपल्स सभव है ?
यदि किसी समांतर श्रेणी के प्रथम $p, q, r$ पदों का योगफल क्रमशः $a, b$ तथा $c$ हो तो सिद्ध कीजिए कि
$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
यदि $\frac{{3 + 5 + 7 + ......{\text{upto}}\;n\;{\text{terms}}}}{{5 + 8 + 11 + ....{\text{upto}}\;10\;{\text{terms}}}} = 7$, तो $n$ का मान है
मान लें कि एक समांतर श्रेणी $(arithmetic\,progression)$ के पहले $m$ पदों का योग $n$ है एवं इसके पहले $n$ पदों का योग $m$ है। यहाँ $m \neq n$ है। तब इस श्रेणी के पहले $(m+n)$ पदों का योग होगा:
माना $S _{ n }$ एक समान्तर श्रेढ़ी के प्रथम $n$ पदों के योग को दर्शाता है। यदि $S_{4}=16$ तथा $S_{6}=-48$ है, तो $S_{10}$ बराबर है