मान लें कि एक समांतर श्रेणी $(arithmetic\,progression)$ के पहले $m$ पदों का योग $n$ है एवं इसके पहले $n$ पदों का योग $m$ है। यहाँ $m \neq n$ है। तब इस श्रेणी के पहले $(m+n)$ पदों का योग होगा:

  • [KVPY 2018]
  • A

    $1-m n$

  • B

    $m n-5$

  • C

    $-(m+n)$

  • D

    $m+n$

Similar Questions

यदि ${a^2},\,{b^2},\,{c^2}$ समान्तर श्रेणी में हैं, तो $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$  होंगे  

$a$ व $b$ के बीच में $n$ समान्तर माध्यों का योग है

$1$ व $100$ के बीच $3$ के गुणज वाली प्राकृत संख्याओं का योग है

यदि $b + c,$ $c + a,$ $a + b$ हरात्मक श्रेणी में हों, तो $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ होंगे

तीन घनात्मक पूर्णाकों $\mathrm{p}, \mathrm{q}, \mathrm{r}$, के लिए $\mathrm{x}^{\mathrm{pq}}=\mathrm{y}^{\mathrm{qr}}=\mathrm{z}^{\mathrm{p}^2 \mathrm{r}}, \mathrm{r}=\mathrm{pq}+1$ हैं तथा $3,3 \log _{\mathrm{y}} \mathrm{x}$, $3 \log _z y, 7 \log _x z$ एक $A.P.$ में है, जिसका सार्व अंतर $\frac{1}{2}$ है। तो $\mathrm{r}-\mathrm{p}-\mathrm{q}$ बराबर है

  • [JEE MAIN 2023]