बिन्दु $(3, -4)$ से वृत्त ${x^2} + {y^2} - 4x - 6y + 3 = 0$ पर खींची स्पर्श रेखा की लम्बाई का वर्ग है
$20$
$30$
$40$
$50$
एक बिंदु $P$ से वत्त $x ^{2}+ y ^{2}-2 x -4 y +4=0$ पर दो स्पर्श रेखाएँ खींची गई हैं। इन स्पर्श रेखाओं के बीच का कोण $\tan ^{-1}\left(\frac{12}{5}\right)$ है, जहाँ $\tan ^{-1}\left(\frac{12}{5}\right) \in$ $(0, \pi)$ है। यदि वत्त का केन्द्र $C$ है तथा ये स्पर्श रेखाएँ वत्त को बिंदुओं $A$ तथा $B$ पर स्पर्श करती है, तो $\triangle PAB$ तथा $\triangle CAB$ के क्षेत्रफलों का अनुपात है
यदि वृत्त जिसका केन्द्र $(-1, 1)$ है, सरल रेखा $x + 2y + 12 = 0$ को स्पर्श करता है, तब स्पर्श-बिन्दु के निर्देशांक हैं
वृत्त ${x^2} + {y^2} = 5$ के बिन्दु $(1,-2) $ पर स्पर्श रेखा वृत्त ${x^2} + {y^2} - 8x + 6y + 20 = 0$ को
वृत्त ${x^2} + {y^2} + 2x + 4y + 3 = 0$ के बिन्दु $(-2, -3)$ पर अभिलम्ब की प्रवणता है
बिन्दु $(4, 3)$ से वृत्त ${x^2} + {y^2} = 9$ पर स्पर्श रेखाएँ खींची गयी हैं। इन स्पर्श रेखाओं और इनके स्पर्श बिन्दुओं को मिलाने वाली रेखा से बने त्रिभुज का क्षेत्रफल है