यदि वृत्त जिसका केन्द्र $(-1, 1)$ है, सरल रेखा $x + 2y + 12 = 0$ को स्पर्श करता है, तब स्पर्श-बिन्दु के निर्देशांक हैं
$\left( {\frac{{ - 7}}{2}, - 4} \right)$
$\left( {\frac{{ - 18}}{5},\frac{{ - 21}}{5}} \right)$
$(2,-7)$
$(-2, -5)$
बिंदु $P (-1,1)$ से वत्त $x ^{2}+ y ^{2}-2 x -6 y +6=0$ पर दो स्पर्श रेखाएँ खींची जाती हैं। यदि ये स्पर्श रेखाएँ वत्त को बिंदुओं $A$ तथा $B$ पर स्पर्श करती हैं तथा वत्त पर $D$ एक बिंदु है जिसके लिए रेखाखंडों $AB$ तथा $AD$ की लम्बाइयाँ बराबर हैं, तो त्रिभुज $ABD$ का क्षेत्रफल बराबर है
माना $y=x+2,4 y=3 x+6$ तथा $3 y=4 x+1$ वृत्त $(\mathrm{x}-\mathrm{h})^2+(\mathrm{y} \mathrm{k})^2=\mathrm{r}^2$ की तीन स्पर्श रेखाएँ हैं, तो $\mathrm{h}+\mathrm{k}$ बराबर है :
$x = 7$ वृत्त ${x^2} + {y^2} - 4x - 6y - 12 = 0$ को स्पर्श करती है तब एक स्पर्श बिन्दु के निर्देशांक हैं
रेखा $3x + 4y = 1$ के समान्तर वृत्त $5{x^2} + 5{y^2} = 1$ की स्पर्श रेखा का समीकरण है
यदि बिन्दु $(1,2)$ से वृत्तों ${x^2} + {y^2} + x + y - 4 = 0$ तथा $3{x^2} + 3{y^2} - x - y + k = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयों का अनुपात $4 : 3$ हो, तो $k =$