एक $50\,cm$ लम्बी एवं $10\,g$ द्रव्यमान की रस्सी पर चलने वाली अनुप्रस्थ तरंग की चाल $60\,ms ^{-1}$ है। तार का अनुप्रस्थ क्षेत्रफल $2.0\,mm ^2$ और इसका यंग गुणांक $1.2 \times 10^{11}\,Nm ^{-2}$ है। तन्यता के कारण इसकी वास्तविक लम्बाई में हुई वृद्धि $x \times 10^{-5}\,m$ है। $x$ का मान है $..............$
$10$
$15$
$13$
$14$
$2.50 \,kg$ द्रव्यमान की $20\, cm$ लंबी तानित डोरी पर $200\, N$ बल का तनाव है । यदि इस डोरी के एक सिरे को अनुप्रस्थ झटका दिया जाए तो उत्पन्न विक्षोभ कितने समय में दूसरे सिरे तक पहुँचेगा ?
दोनों सिरों पर परिबद्ध किसी तानित डोरी पर अनुप्रस्थ विस्थापन को इस प्रकार व्यक्त किया गया है
$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$
जिसमें $x$ तथा $y$ को $m$ तथा $t$ को $s$ में लिया गया है । इसमें डोरी की लंबाई $1.5 \,m$ है जिसकी संहति $3.0 10^{-2}\, kg$ है । निम्नलिखित का उत्तर दीजिए :
$(a)$ यह फलन प्रगामी तरंग अथवा अप्रगामी तरंग में से किसे निरूपित करता है ?
$(b)$ इसकी व्याख्या विपरीत दिशाओं में गमन करती दो तरंगों के अध्यारोपण के रूप में करते हुए प्रत्येक तरंग की तरंगदैर्ध्य , आवृत्ति तथा चाल ज्ञात कीजिए
$(c)$ डोरी में तनाव ज्ञात कीजिए
द्रव्यमान $m _{1}$ तथा लम्बाई $L$ की कोई एकसमान रस्सी किर्सी दृढ टेक से ऊर्ध्वाधर लटकी है। इस रस्री के मुक्त सिरे से द्रव्यमान $m _{2}$ का कोर्ई गुटका जुड़ा है । रस्सी के मुक्त सिरे पर तरंगदैर्ध्य $\lambda_{1}$ का कोई अनुप्रस्थ स्पन्द उत्पत्र किया जाता है। यदि रस्सी के शीर्प तक पहुँचने पर इस स्पन्द की तरंगदैर्ध्य $\lambda_{2}$ हो जाती है, तब अनुपात $\lambda_{2} / \lambda_{1}$ का मान है
$1 m$ लम्बी एवं $2 \times 10^{-5} kg$ द्रव्यमान वाली एक डोरी (string) में तनाव $T$ है। जब डोरी कम्पन करती है तब दो उत्तरोत्तर गुणावृत्तियों (successive harmonics) की आवृत्तियाँ $750 Hz$ तथा $1000 Hz$ पायी जाती हैं| तनाव $T$ का मान. . . . . . .Newton है।
$12.0\, m$ लंबे स्टील के तार का द्रव्यमान $2.10\, kg$ है । तार में तनाव कितना होना चाहिए ताकि उस तार पर किसी अनुप्रस्थ तरंग की चाल $20^{\circ} C$ पर शुष्क वायु में ध्वनि की चाल $\left(343\, m s ^{-1}\right)$ के बराबर हो ।