समीकरण $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ का हल समुच्चय है
$\left\{ {\frac{p}{q},\,\frac{q}{p}} \right\}$
$\left\{ {pq,\,\frac{p}{q}} \right\}$
$\left\{ {\frac{q}{p},\,pq} \right\}$
$\left\{ {\frac{{p + q}}{p},\,\frac{{p + q}}{q}} \right\}$
माना $\lambda \in \mathbb{R}$ है तथा माना समीकरण $\mathrm{E}:|\mathrm{x}|^2-2|\mathrm{x}|+|\lambda-3|=0$ है। तो समुच्चय $\mathrm{S}=\{\mathrm{x}+\lambda: \mathrm{x}, \mathrm{E}$ का एक पूर्णांक हल है $\}$ में सबसे बड़ा अवयव है______________.
यदि समीकरण ${x^3} - 3x + 2 = 0$ के दो मूल बराबर हों तो मूल होंगे
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है
यदि $|x - 2| + |x - 3| = 7$, तब $x =$
समीकरण $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ के वास्तविक हलों की संख्या है $............$