समीकरण $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ के वास्तविक हलों की संख्या है $............$
$6$
$9$
$20$
$2$
मान $S=\left\{x: x \in \mathbb{R} \text { एवं }(\sqrt{3}+\sqrt{2})^{x^2-4}+(\sqrt{3}-\sqrt{2})^{x^2-4}=10 \text { हैं }\right\}$ है। तब $\mathrm{n}(\mathrm{S})$ बराबर है-
पूर्णांक " $k$ ", जिसके लिए असमिका $x ^{2}-2(3 k -1) x +8 k ^{2}-7>0, R$ में प्रत्येक $x$ के लिए, मान्य है, है
समीकरण $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ का एक मूल होगा
एक रेलवे प्लेटफॉर्म की लंबाई $88$ मीटर है । प्लेटफॉर्म पर खड़े एक व्यक्ति ने देखा कि रेल गाड़ी को प्लेटफॉर्म को पूरी तरह पार करने में $21$ सेकंड लगे । इसका मतलब है कि इंजन के प्लेटफॉर्म पर प्रवेश करने से लेकर अंतिम डिब्बे के प्लेटफॉर्म छोड़े तक में बीता समय । उसने यह भी देखा कि रेल गाड़ी के उसे पार करने में $9$ सेकंड लगाए । यदि रेल गाड़ी एक समान गति से चल रही थी, तो रेल गाड़ी की लंबाई होगी (मीटर में)
माना द्विघात समीकरण $x ^2- x -4=0$ के मूल $\alpha, \beta(\alpha > \beta)$ हैं। यदि $P _{ n }=\alpha^{ n }-\beta^{ n }, n \in N$ है, तो $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^2+ P _{14} P _{15}}{ P _{13} P _{14}}$ बराबर है $.........$.