The solution set of $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ in the interval $[0,\,\,2\pi ]$ is

  • A

    $\left\{ {\frac{\pi }{3},\,\frac{{2\pi }}{3}} \right\}$

  • B

    $\left\{ {\frac{\pi }{3},\,\pi } \right\}$

  • C

    $\left\{ {\frac{{2\pi }}{3},\frac{{4\pi }}{3}} \right\}$

  • D

    $\left\{ {\frac{{2\pi }}{3},\frac{{5\pi }}{3}} \right\}$

Similar Questions

If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in  [0,2 \pi ]$ , then maximum integral value of $x$ is

If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is

The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is

The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to 

If ${\sec ^2}\theta = \frac{4}{3}$, then the general value of $\theta  $ is