The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to 

  • A

    $\pi $

  • B

    $2\pi $

  • C

    $3\pi $

  • D

    $4\pi $

Similar Questions

The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to

If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then $\theta $

If $\cot \theta + \tan \theta = 2{\rm{cosec}}\theta $, the general value of $\theta $ is

One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval

  • [KVPY 2017]

If $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0 \le x \le {180^o}$, then $x =$