The solution of the equation ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$

  • A

    $x = 2$

  • B

    $x = 3$

  • C

    $x = 4$

  • D

    $x = - 2$

Similar Questions

If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to

If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ then $x$ has

If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to

The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is

  • [IIT 2012]

Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$  Then, the possible value(s) of $\frac{x}{y}$

  • [KVPY 2020]