The solution of the equation ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$
$x = 2$
$x = 3$
$x = 4$
$x = - 2$
The number of solution of ${\log _2}(x + 5) = 6 - x$ is
The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is
Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is
$\log ab - \log |b| = $
The product of all positive real values of $x$ satisfying the equation $x^{\left(16\left(\log _5 x\right)^3-68 \log _5 x\right)}=5^{-16}$is. . . . .