The solution of  $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is 

  • A

    $x=\frac{2n\pi}{9},n\in I,n\neq 9m,m\in I$

  • B

    $x=\frac{2n\pi}{9},n\in I,n= 9m,m\in I$

  • C

    $x=\frac{n\pi}{9}+\frac{\pi}{2},n\in I$

  • D

    $x=\frac{2n\pi}{3}+\frac{\pi}{6},n\in I$

Similar Questions

If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is

If both roots of quadratic equation ${x^2} + \left( {\sin \,\theta  + \cos \,\theta } \right)x + \frac{3}{8} = 0$ are positive and distinct then complete set of values of $\theta $ in $\left[ {0,2\pi } \right]$ is 

The number of solutions of the equation $x +2 \tan x =\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :

  • [JEE MAIN 2021]

If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is

Let,$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$. Then $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to.

  • [JEE MAIN 2022]