If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is
$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + \frac{\pi }{{18}}$
$\frac{{n\pi }}{3},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
$\frac{{n\pi }}{6},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
The sides of a triangle are $\sin \alpha ,\,\cos \alpha $ and $\sqrt {1 + \sin \alpha \cos \alpha } $ for some $0 < \alpha < \frac{\pi }{2}$. Then the greatest angle of the triangle is.....$^o$
The number of solutions of the equation $\sin x=$ $\cos ^{2} x$ in the interval $(0,10)$ is
The number of solutions of the equation $4 \sin ^2 x-4$ $\cos ^3 \mathrm{x}+9-4 \cos \mathrm{x}=0 ; \mathrm{x} \in[-2 \pi, 2 \pi]$ is :
If $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$, then the general value of $\theta $ is
The number of distinct solutions of the equation $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ in the interval $[0,2 \pi]$ is