If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is
$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + \frac{\pi }{{18}}$
$\frac{{n\pi }}{3},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
$\frac{{n\pi }}{6},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
If $\alpha ,$ $\beta$ are different values of $x$ satisfying $a\cos x + b\sin x = c,$ then $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $
The equation $\sqrt 3 \sin x + \cos x = 4$ has
Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.
Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to
The number of solutions of the equation $1 + {\sin ^4}\,x = {\cos ^2}\,3x,x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ is
If $|k|\, = 5$ and ${0^o} \le \theta \le {360^o}$, then the number of different solutions of $3\cos \theta + 4\sin \theta = k$ is