The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta  = 2,$ is

  • A

    $\frac{\pi }{3}$

  • B

    $\frac{{5\pi }}{3}$

  • C

    $\frac{{2\pi }}{3}$

  • D

    $\frac{{4\pi }}{3}$

Similar Questions

The solution of the equation $4{\cos ^2}x + 6$${\sin ^2}x = 5$

If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is

If $tanA + cotA = 4$, then $tan^4A + cot^4A$ is equal to

The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi  + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi  + x}}{3}} \right) = 1$ is

The general value of $\theta $  that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in  I)$