The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta = 2,$ is
$\frac{\pi }{3}$
$\frac{{5\pi }}{3}$
$\frac{{2\pi }}{3}$
$\frac{{4\pi }}{3}$
The solution of the equation $4{\cos ^2}x + 6$${\sin ^2}x = 5$
If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is
If $tanA + cotA = 4$, then $tan^4A + cot^4A$ is equal to
The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi + x}}{3}} \right) = 1$ is
The general value of $\theta $ that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in I)$