$\tan (x - y) = 1,\,$ $\sec (x + y) = \frac{2}{{\sqrt 3 }}$ को सन्तुष्ट करने वाले $x$ तथा $y$ के धनात्मक मान हैं
$x = \frac{{25\pi }}{{24}},\,y = \frac{{19\pi }}{{24}}$
$x = \frac{{37\pi }}{{24}},\,y = \frac{{7\pi }}{{24}}$
$x = \frac{\pi }{4},\,y = \frac{\pi }{2}$
$a$ ओर $b$ दोनो
यदि $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$, तो $\theta $ का व्यापक मान है
समीकरण $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$ को सन्तुष्ट करने वाला न्यूनतम धनात्मक कोण है
यदि $2 \cos \theta+\sin \theta=1\left(\theta \neq \frac{\pi}{2}\right)$ है, तो $7 \cos \theta+6 \sin \theta$ बराबर है
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\cos 4 x=\cos 2 x$
$(-\infty, \infty)$ में बिन्दुओं की संख्या, जिनके लिए $x^2-x \sin x-\cos x=0$, है-