The set of values of $x$ satisfying the equation,${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$, is :

  • A

    an empty set

  • B

    a singleton

  • C

    a set containing two values

  • D

    an infinite set

Similar Questions

Minimum value of the function $f(x) = \left| {\sin \,x + \cos \,x + \tan \,x + \cot \,x + \sec \,x + \ cosec\ x} \right|$ is equal to

If $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1,$ the number of solutions of the given equation when $x \in\left[0, \frac{\pi}{2}\right]$ is

  • [JEE MAIN 2021]

The number of  $x \in  [0,2\pi ]$  for which $\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x}  - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ is

  • [JEE MAIN 2016]

The sum of all $x \in[0, \pi]$ which satisfy the equation $\sin x+\frac{1}{2} \cos x=\sin ^2\left(x+\frac{\pi}{4}\right)$ is

  • [KVPY 2012]

The numbers of solution $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ in $[0,4\pi ]$ is