$'a'$ ની કઇ કિમત માટે અસમતા ${x^2} - (a + 2)x - (a + 3) < 0$ નુ ઓછામા ઓછુ એક વાસ્તવિક કિમત $x$ માટે સંતોષે છે.
$\left[ { - 3,\infty } \right)$
$\left( { - 3,\infty } \right)$
$\left( { - \infty , - 3} \right)$
$\left( { - \infty , 3} \right]$
ધારોકે $f: R -\{0,1\} \rightarrow R$ એવુ વિધેય છે કે જેથી $f(x)+f\left(\frac{1}{1-x}\right)=1+x$ થાય . તો $f(2)......$.
ધારોકે $R =\{ a , b , c , d , e \}$ અને $S =\{1,2,3,4\}$ તો $f( a ) \neq 1$ હોય તેવા $f: R \rightarrow S$ વ્યાપ્ત વિધેયોની સંખ્યા $.........$ છે.
ધારો કે $f:[2,\;2] \to R$ ; $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, તો $\{ x \in ( - 2,\;2):x \le 0$ અને $f(|x|) = x\} = $
જો $f(\theta)$ એ રેખા $( \sqrt {\sin \theta } )x + ( \sqrt {\cos \theta })y +1 = 0$ નુ ઉંગમબિંદુ થી અંતર હોય તો $f(\theta)$ નો વિસ્તાર મેળવો.
જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ હોય તો $b$ ની કઇ કિમતો માટે $f(x)$ ની $x = 1$ મહત્તમ કિમત મળે