ધારોકે $f: R -\{0,1\} \rightarrow R$ એવુ વિધેય છે કે જેથી $f(x)+f\left(\frac{1}{1-x}\right)=1+x$ થાય . તો $f(2)......$.
$\frac{9}{2}$
$\frac{9}{4}$
$\frac{7}{4}$
$\frac{7}{3}$
વિધેય $f\left( x \right) = \left| {\sin \,4x} \right| + \left| {\cos \,2x} \right|$ નો આવર્તમાન મેળવો.
ધારો કે વિધેય :$f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$, $f(x)=\sin x$ અને $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$, $g(x)=\cos x$ દ્વારા આપેલ છે. સાબિત કરો કે $f$ અને $g$ એક-એક છે, પરંતુ $f+ g$ એક-એક નથી.
વિધેય $f(x) = \frac{{{x^2}}}{{{x^2} + 1}}$ નો વિસ્તાર મેળવો.
વિધેય $f(x)\,=\,\frac{1}{{\sqrt {(x + 1)({e^x} - 1)(x - 4)(x + 5)(x - 6)} }}$ નો પ્રદેશગણ મેળવો.
વિધેય $f(x) = \cos (x/3)$ નો વિસ્તાર મેળવો.