The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is
$\left( { - \infty ,\,\, - {5 \over 2}} \right] \cup (0, + \infty )$
$\left[ {{5 \over 2}, + \,\infty } \right)$
$( - \infty ,\, - 2) \cup (0, + \,\infty )$
None of these
If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is
The number of integral solutions $x$ of $\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ is
If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then
Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is
The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is