The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is
$\left( { - \infty ,\,\, - {5 \over 2}} \right] \cup (0, + \infty )$
$\left[ {{5 \over 2}, + \,\infty } \right)$
$( - \infty ,\, - 2) \cup (0, + \,\infty )$
None of these
If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is
If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
$\log ab - \log |b| = $