The set of all values of $\lambda$ for which the equation $\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda$
$[-2,-1]$
$\left[-2,-\frac{3}{2}\right]$
$\left[-1,-\frac{1}{2}\right]$
$\left[-\frac{3}{2},-1\right]$
If $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ and $x$ is the solution of the equatioin $y = 2\left[ x \right] + 2$ and $y = 3\left[ {x - 2} \right] ,$ where $\left[ x \right]$ denotes the integral part of $x,$ then $a$ is equal to :-
Solve $2 \cos ^{2} x+3 \sin x=0$
If ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ then the general value of $\theta $ is
Let $f:[0,2] \rightarrow R$ be the function defined by
$f ( x )=(3-\sin (2 \pi x )) \sin \left(\pi x -\frac{\pi}{4}\right)-\sin \left(3 \pi x +\frac{\pi}{4}\right)$
If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is. . . . . . . . .
If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to