Solve $2 \cos ^{2} x+3 \sin x=0$
The equation can be written as
$2\left(1-\sin ^{2} x\right)+3 \sin x=0$
or $2 \sin ^{2} x-3 \sin x-2=0$
or $(2 \sin x+1)(\sin x-2)=0$
Hence $\sin x=-\frac{1}{2} \quad$ or $\quad \sin x=2$
But $\sin x=2$ is not possible (Why?)
Therefore $\sin x=-\frac{1}{2}=\sin \frac{7 \pi}{6}$
Hence, the solution is given by
$x=n \pi+(-1)^{n} \frac{7 \pi}{6}, \text { where } n \in Z.$
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval
If $m$ and $n$ respectively are the numbers of positive and negative value of $\theta$ in the interval $[-\pi, \pi]$ that satisfy the equation $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$, then $mn$ is equal to $.............$.
If $K = sin^6x + cos^6x$, then $K$ belongs to the interval
If $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ where $x$ and $y$ both lie in second quadrant, find the value of $\sin (x+y)$.
If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then