બધા $z \in C$ માટે જો $\left| z \right| = 1$ અને ${\mathop{\rm Re}\nolimits} \,z \ne 1$ હોય તો  $\alpha  \in R$ ના ઉકેલગણ મેળવો કે જેથી $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ એ શુધ્ધ કાલ્પનિક સંખ્યા થાય. 

  • [JEE MAIN 2018]
  • A

    $\left\{ 0 \right\}$

  • B

    an empty set

  • C

    $\left\{ {0,\frac{1}{4}, - \frac{1}{4}} \right\}$

  • D

    equal to $R$

Similar Questions

જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા છે કે જેથી $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ તો arg $({z_1}) - $arg $({z_2})$ = . . . ..

  • [IIT 1987]

ધારો કે $\alpha$ અને $\beta$ એ અનુક્રમે સમીકરણ $(\bar{z})^2+|z|=0, z \in \mathrm{C}$ ના તમામ શૂન્યેતર ઉકેલોના સરવાળા તથા ગુણાકાર દર્શાંવે છે. તો $4\left(\alpha^2+\beta^2\right)=$ ..........

  • [JEE MAIN 2024]

સંકર સંખ્યા $z$ માટે, $z + \bar z$ અને $z\,\bar z$ પૈકી એક   . . . . . બને.

$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $

$\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3 - i}}$ નો કોણાંક મેળવો.