दो सदिशों $\mathop P\limits^ \to $ तथा $\mathop Q\limits^ \to $ का परिणामी $\mathop R\limits^ \to $ है। यदि $Q$ को दुगना कर दिया जाए तो नया सदिश $P$ के लम्बवत हो जाता है। $R$ निम्न के बराबर होगा
$P$
$(P+Q)$
$Q$
$(P-Q)$
दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।
दो सदिशों $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के मध्य कोण $\theta $ हो तो इनके योग का मान होगा
परिमाण $2 F$ तथा $3 F$ वाले दो बल $P$ तथा $Q$ एक-दूसरे के साथ $\theta$ कोण पर लगाये जाते हैं। यदि बल $Q$ को दुगुना कर दिया जाए तो उनका परिणामी बल भी दुगुना हो जाता है तो कोण $\theta$ का मान ...... $^o$ है।
$\vec{a}$ से $\vec{f}$ तक छ: सदिशों के परिमाणों और दिशाओं को, दिये गये चित्र (आरेख) में प्रदशिर्शित किया गया है। निम्निलित में से कौन सा कथन इनके लिये सत्य (सही) है?